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Starting vortex, separation bubbles 
and stall: a numerical study of laminar unsteady 

flow around an airfoil 

By UNMEEL B. MEHTAT AND ZALMAN LAVAN 
Mechanics and Mechanical and Aerospace Engineering Department, 

Illinois Institute of Technology, Chicago 

(Received 30 November 1973 and in revised form 28 May 1974) 

The stalling characteristics of an airfoil in laminar viscous incompressible fluid 
are investigated. The governing equations in terms of the vorticity and stream 
function are solved using an implicit Enite-difference scheme and point successive 
relaxation procedure. The development of the impulsively started flow, the initial 
generation of circulation, and the behaviour of the forces a t  large times are 
studied. 

Following the impulsive start, the lift is at  first very large and then it rapidly 
drops. The subsequent growth of circulation and lift is associated with the 
starting vortex. After incipient separation, the lift increases owing to enlarge- 
ment of the separation bubble and intensification of the flow rotation in it. The 
extension of this bubble beyond the trailing edge causes it to rupture and brings 
about the stalling characteristics of the airfoil. Subsequently, new bubbles are 
formed near the upper surface of the airfoil and are swept away. The behaviour 
of the lift acting on the airfoil is explained in terms of the strength and sense 
of these bubbles. The lift increases when attached clockwise bubbles grow and 
when counterclockwise bubbles are swept away and vice versa. 

1. Introduction 
The theory of the flow past airfoils has attracted the attention of aero- 

dynamicists for more than 75 years. Yet there is a lack of understanding of the 
phenomena associated with the stalling of airfoils. Generally, at  stall laminar 
separation occurs followed by reattachment (usually after transition in the free 
shear layer); subsequently, separation may take place near the trailing edge. 
In addition, the striking characteristic of well-separated flows past an airfoil 
is their unsteadiness, which has a direct effect on the mean flow. 

The steady flow past an airfoil is usually determined by boundary-layer and 
potential flow theories. Mathematical and physical approximations regarding 
the Kutta-Joukowski condition, location of the separation point, and the sepa- 
rated region are made; and iteration between potential flow and boundary-layer 
flow is required. Well-separated flows, however, cannot be handled satisfactorily 
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by this approach and solution of the Navier-Stokes equations is required. Hence, 
if separated regions are included, one has to iterate between potential flow, 
boundary-layer flow and separated flow regions that would have been continu- 
ously matched. It would be considerably more difficult to study unsteady flow 
by this method because each time step requires the iteration and matching 
procedure. The approach taken here is to eliminate this method and solve the 
Navier-Stokes equations numerically in the whole flow field around the airfoil. 
Low Reynolds number (laminar) flow is investigated to  understand the physical 
phenomena manifested by unsteady well-separated flows and to  study the rela- 
tion between separation bubbles and unsteady Ioads. This is done by observing 
the time development of the flow field following the impulsive start of an airfoil. 
Further details of this work may be found in the doctoral dissertation of Mehta 
(1972). 

2. Mathematical formulation 

mapped into a unit circle using the transformation 
To facilitate the numerical computations, the field exterior to the airfoil is 

where z = x + iy, K = r eiO and y = 6 + ir. A proper choice of the constants y and c 
facilitates the solution for the flow over any one of the following shapes: a 
flat plate, a circular or elliptical cylinder and symmetric or cambered airfoils. 
I n  the present study, the trailing edge of the airfoil is rounded off by defining 

c = [[+(1-y2)*](1-&), where 0 < & <  I. ( l a )  

The governing equations for the unsteady incompressible flow of a Newtonian 
fluid in terms of the vorticity w and stream function Y are 

and 

where 

(3) 

The disturbance stream function @ is defined as 

@=Y--y 

and the radial co-ordinate is stretched according to 

p = (k, + ha)-, [tanh-1 (TIC, - k4) + k2] ,  

with k3 = [tanh k, + tanh k2] [ 1 - ro/(ro - I)], 

k, = tanh k, - ro[tanh k, + tanh k2]/(r0 - 1). 

(4) 
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FIGURE 1. Domain of calculation, boundary conditions and grid notation. 

The constants ro, kl and k, (all positive) determine the value ofp. As r varies from 
r,, to 1, p varies from 0 to 1. The Reynolds number is R = Ul/v  (I and v are, respec- 
tively, the chord and kinematic viscosity) and L is the dimensionless chord. The 
stretching function (4) is introduced to obtain a better distribution of grid points 
in the physical plane. The grid spacing is further condensed next to the surface 
and is adequate away from it. The velocity components in terms of the stream 
function are defined as 

At Reynolds numbers much larger than unity, the vorticity directly governs 
the flow field near the body and the wake, and it indirectly (through the Biot- 
Savart law) modifies the far-field velocity and pressure. This physical pheno- 
menon is used to break up the region of calculation into two parts: a small viscous 
region and a large irrotational region bounded by po and pr with 8, < 8 < 8, 
(figure 1). On the surface (p = l), the constraint of no slip is applied in the form 

Y = 0 (or @ = -9)  ( 6 )  

and aYr/ap = 0. ( 7 )  
Condition ( 7 )  is used to calculate the surface vorticity from the stream function 
equation (3) with @ replaced by Y. The flow a t  the far boundary is constrained 
with first-order differential relations obtained from the Navier-Stokes equations 
by dropping the tangential derivative of the pressure and viscous terms, i.e. a t  
the outer boundary, the inertia terms are dominant : 

and 
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in which uz is obtained from the 0 component of the Navier-Stokes equation: 

Note that, in (lo), w = 0 when el 6 0 < 0,. At t = 0, the flow is irrotational 
(without circulation), i.e. w = 0 and $ = - yr2. 

These new boundary conditions are believed to be superior to specifying 
either potential flow or uniform velocity since ‘eddies’ or vortices can pass 
through the downstream boundary. Also, since the velocity far away is not de- 
fined, the circulation there can change with time. Lugt & Haussling (1972) allowed 
both vorticity and momentum to be transported out of the downstream boundary 
with the free-stream velocity when they studied the flow past an elliptical 
cylinder. Their use of the free-stream velocity is questionable. The convecting 
acceleration takes place with the local velocity not the free-stream velocity. 
Therefore, (8) correctly represents the vorticity transport through the down- 
stream boundary. In  (lo), the absence of the tangential pressure deriva,tive, 
in our opinion, will not significantly affect the motion of a vortex through the 
boundary. 

The surface pressure distribution is obtained by integrating the tangential 
component of the Navier-Stokes equation : 

withp(0) = 0. The pressure coefficient C, is therefore equal to 2p. On the surface, 
the tangential stress is given by v12 = (L/R) w .  Both p and vl2 are made dimen- 
sionless with pU2. The conventional expressions for the coefficients of lift, 
drag and moment around the origin of the z plane (considered positive in the 
counter clockwise direction) are 

lift moment c - 
‘ L =  wl, D - +puy? M - +puzp 

with 

where the subscripts P and P, respectively, represent the contributions due to 
pressure and viscous forces. 

3. Numerical formulation 
A n  implicit, three-point, backward, finite-difference formulation is used to 

solve the vorticity equation (2). The convective terms are represented by Ara- 
kawa’s (1966) second-order nine-point formula. Central differences for space 
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derivatives are used in the domain of calculation and a t  the outer boundary 
wherever possible. The domain bounded by 0 6 8 < 2n andp, 6 p < 1 is divided 
into a rectangular network (figure 1 ) .  The increments in 0, p and t are specified 
by AU, Ap and At with i , j  and n as the corresponding indices. The finite-difference 
vorticity equation ( 2 )  and disturbance stream function equation (3)  are written 
for the relaxation procedure (with the superscript k as the iteration counter) as 

A p R r .  dp 
(A@)?/ = [ 2At ( 

[ ~ ) ~ r 1 + 0 . 5 ( ' 2 ~ + r ~ ) j A p + -  12ABL (-) dr 

The left-hand sides indicate the error in terms of the difference between the value 
of the function as determined from the finite-difference equation and its value a t  
the previous iteration. There is no superscript denoting the iteration counter 
for (i 1,j) terms since the direction of sweep in the 8 direction is altered during 
the iteration sequence as explained below. The three-point backward time dif- 
ference is given by TI = 3, T2 = - 4 ,  T3 = I and m = 2 ;  whereas the two-point 
backward difference is formulated with TI = 2 ,  T2 = - 2 ,  T3 = 0 and m = 1. 
The latter formulation is used following the impulsive start and whenever the 
time step is cut in half, for the next two time steps. The truncation error for the 
vorticity equation (12) is O [ ( A P ) ~  + (AU)2 + (At)"]; for the disturbance stream 
function equation (131, it is O[(Ap)2 + (AU)2]. The above formulation of the convec- 
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tive terms in the vorticity equation conserves the mean vorticity and partially 
conserves the mean-square vorticity and mean kinetic energy (Arakawa 1970), 
provided that Y is constant along the boundary. 

The no-slip condition on the surface ( j  = J L )  is reformulated in terms of 
vorticity from the formulation of Woods (1954). The finite-difference expression 
with a truncation error O[(Ap)2] is 

In the far boundary conditions (8)-(10), the 8 derivative is represented by a 
central difference and the p derivative is approximated by a three-point forward 
difference. The time derivative is replaced as discussed before. The Jacobian in 
the vorticity condition (8) cannot be represented by Arakawa's formulation. 
The finite-difference form of this Jacobian is chosen so that its numerical value 
at  points next to the boundary would be close to that calculated from Arakawa's 
formulation. This is achieved by considering the Jacobian JK of K ( = *(u: + u;)) 
and Y for the potential flow solution around a circular cylinder. The numerical 
values of JK at nodal points next to p = po (as calculated by Arakawa's formula- 
tion) are compared with those calculated from different finite-difference forms 
of JK to be used at  the boundary. The following finite-difference form in terms of 
the vorticity residue at  the outer boundary is chosen: 

(A@)?? = (2At((dp/dr), (aAOAp)-l[- 4(Y?+:, -Y?L~,~)  w?$ 
f (UP?;?, 3 - Y?L%, 3) w?: f ( - 3Y?+, 1 f 4YT;t, 2 - y?;!, 3) wT+1,1 

- ( -3YT-1,1+4Y?~t,2 -YTL$,~) w ~ - l , l ] } - ( T 2 w ~ ~ 1 + T 3 w ~ ~ 2 ) H ~ , 1 r 1 )  

x [(TIH:,lrl) - 6At(Y?+l,l -Y?-l,l) (dp/dr), (4ApA8)-1]-1- wZF- l .  (15) 

Equation (15) has a first-order truncation error in space variables; hence it 
contains numerical diffusion. 

The disturbance stream function is obtained from the finite-difference form 

where 

is the finite-difference form of (10). 

point are, respectively, determined from 
The present values of the vorticity and disturbance stream function at  a grid 

wk = wk-1 +P , (Aw)~  and $k = +k-1+/32(A$)k, 

where PI and P2 are relaxation parameters. For the kth iteration a t  any time t ,  
the values of w and @ are determined a t  each nodal point by sweeping in the 
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general direction of the free stream, i.e. from B = 7~ to 0 and from 8 = n to 2n 
so that the numerical errors are propagated downstream, and away from the 
surface from p = i to po since the surface is the source of vorticity. Furthermore, 
when k (the iteration number) is odd, the direction of calculation is from B = 7~ 

to 2n followed by B = 7~ to 0, whereas this order is interchanged for k even. 
Computations of pressure coefficients on the surface and loads are conducted 

for each time t with a finite-difference integration formula derived by com- 
bining two four-point expressions (in order to have a lower effective truncation 
error). The integral of a function f(p, 0 )  between the nodal points i and i f 1 on 
the surface is expressed as 

I = &(llIl+ 1912), 

I2 = TT AB( -fi-l+ 13fi + 13fi+,-fi+2). 

where I, = 2 4  (9fi + - 5~~ +f i+3) ,  

This formula is used first to  determine the pressure from (1 1)  and then the 
loads. The pressure calculations require the normal vorticity gradient, which is 
represented as 

W a P  = (UJL - WJL- l ) /AP.  

This equation has a truncation error O(Ap) .  A formula with a smaller truncation 
error is not used because the derivation of the surface vorticity with a truncation 
error O(Ap2)  requires the use of a formula identical to the above equation for 
a( H2r2w)/ap. 

4. Computation data, accuracy and computer plots 
The computations are conducted for an airfoil a t  15" incidence with R = 1000. 

The shape of the airfoil is defined by < = - 0*05214,7 = 0 and S = 0.025in ( l a ) .  
It has an 8.9998 yo thick symnietric profile with maximum thickness at 28-89 % 
chord. In  transformation (a), k, = 2-0 and k, = 2.8. The grid distribution and 
subdivision of the domain into rotational and irrotational parts are determined 
from I L  = 83, J L  = 48, yo = 0-02 (po = 0), pr  = 0.31915 (rr = 0.0&9796), 
el = 0-8639 rad and 8, = 4.791 rad. The values of pr and po, respectively, cor- 
respond to (approximately) x = 3.0 chords and x = 13-4 chords. The total 
number of node points used is 3840, with 3024 points in the rotational region and 
816 in the irrotational domain. The resulting grid distribution in the vicinity of 
the airfoil is shown in figure 2. The first node point downstream of the trailing 
edge is a t  a distance of 5.567 x 10-5 chord. I n  the relaxation procedure, bl = 0.09 
and p2 = 1.9 are used a t  all time steps. 

Table 1 gives the different time steps used during the calculations. The 
distances travelled by the airfoil during At = 0.001 and 0.512 correspond, 
respectively, to 0.000269 and 0.1379 chord. The time step At is altered to yield 
changes in C, on the surface that are neither small nor severe. Table 1 also shows 
the average values of both the number of iterations (required for a satisfactory 
result) and the maximum (magnitude) residues of the disturbance stream func- 
tion and vorticity (when the iteration procedure is stopped) during each time 
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FIGURE 2. Grid distribution around 9 yo thick symmetric airfoil at a = 15". 

Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

t1-tz 

0.000-0.006 
0.006-0.012 
0.012-0.020 
0.020-0.036 
0.036-0.116 
0.1 16-0.276 
0.276-0.596 
0.596-1.620 
1.620-3.668 
3.668-11.348 

11.348-13.140 
13.140-19'540 
19.540-28.756 

At 

0.001 
0.002 
0.004 
0-008 
0.016 
0.032 
0.064 
0.128 
0.256 
0.512 
0.256 
0.128 
0.256 

Total or average 

Number 
of At 
steps 

6 
3 
2 
2 
5 
5 
5 
8 
8 

15 
7 

50 
36 

152 

knex 

age) 
(aver- 

147 
200 
200 
200 
200 
340 
420 
400 
46 1 
553 
499 
638 
795 

568 

AlC. Aw AC,(%) 
(average) (average) (average) 

2.43 x lo-' 0.298 1.468 
1.09 x 0.212 1.593 
6.30 x lo-' 0.130 1.082 
1.51 x lo-' 4.007 4.258 
3.73 x lo-' 2.199 3.605 
3.91 x 0.647 2.928 
5.16 x lo-' 0.295 1.446 
1.07 x 0.713 6.735 
1.35 x 0.448 2.936 
8.40 x 0.330 1.460 
1.92 x 0.425 2.857 
1-81 x lo-' 0.458 3.216 
1.19 x lo-' 0.456 3.168 

3.83 x lo-' 0.546 3.015 

TABLE 1. Summary of time increments, number of iterations, residues and errors 

interval. The last row in the table gives the average values of the 152 time incre- 
ments. With single-precision calculations on a UNIVAC 1 108 (a 36-bit machine), 
it was not possible to achieve, in general, values of the vorticity residue less than 
O( 10-1). However, this residue relative to the value of the vorticity a t  the trailing 
edge is 0(10-4) following the impulsive start; the residue is 0(10--2)-0(10-1) 
when the maximum vorticity in the field is O( 

The values of the pressure are calculated by integrating (1 1)  from 8 = 0 to n 
and again from 2n to n. The average of the two values thus determined at  8 = 

is reported and used in subsequent calculations of loads. Furthermore, these 
calculations are repeated by reversing the integration directions, i.e. from the 
leading to the trailing edge along both surfaces. The latter procedure gives 
better values on the whole, probably since the radius of curvature at the leading 
edge is much larger than at, the trailing edge. The last column in table 1 reports 
the average percentage errors for selected C, values. 
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t 0.084 0.276 0.596 0.980 1.620 

XCZ 0.012628 0.0 12628 0.012628 0.012628 0.012628 
cv 1.434 1.240 1.168 1.135 1.107 

t 6.228 8.788 19.156 23.124 28.500 

XCZ 0.022387 0.022387 0.0056235 0.012628 0.0 12628 
C P  1.084 1.085 1.055 1.063 1.050 

TABLE 2. Variation of G, near front stagnation point with time 

Table 2 gives the variation of the true pressure coefficient near the front 
stagnation point with time. In this case, the r-momentum equation is integrated 
from upstream along the first 0 line located upstream of the front stagnation 
point. In  the table, x, denotes the normalized distance (with respect to the chord) 
measured from the leading towards the trailing edge along the chord of the air- 
foil (figure 2 ) .  Subscripts 1 and u represent the lower and upper surfaces of the 
airfoil, respectively. After the influence of the impulsive start is no longer felt 
next to the surface (say after t = 6.228), the value of C, remains near unity. 
Note that the quasi-steady Bernoulli equation gives the value of unity for the 
stagnation-point pressure coefficient (once the initial transient period is over). 
The calculated value is larger than unity because the Reynolds number of the 
flow is not large enough, and it does not remain constant because of the unsteady 
nature of the flow. 

Streamlines and equi-vorticity lines are mapped using an incremental plotter. 
The numerical values of the stream function for the plotted streamlines vary 
from - 0.40 to 0.32 with an increment of 0.04; the vorticity values for the plotted 
equi-vorticity lines vary from -9.0 to 7.0 with an increment of 2.0. (An ani- 
mated movie showing the flow development in terms of instantaneous stream- 
lines and equi-vorticity lines is available on loan from the authors.) 

5. Flow field after impulsive start 
In  a very short time, the rear stagnation point moves from its location for 

potential flow to the neighbourhood of the trailing edge and the front stagnation 
point moves up the airfoil (figures 3a and 4a). AS suggested by Batchelor 
(1967, pp. 438-441) this movement of the rear stagnat.ion point is accompanied 
by a counterclockwise separation bubble (defined as the region bounded by an 
instantaneous zero streamline) between the rear stagnation point and the trailing 
edge. The rear dividing streamline leaves the airfoil practically at  the trailing 
edge when t > 0-006. This suggests that immediately after an impulsive start 
the circulation is zero. Thereafter, the front stagnation point reverses its direc- 
tion of motion and moves downstream, while the rear stagnation point remains 
practically at the trailing edge. 

Figures 3 and 5 ( a )  show that the positive equi-vorticity lines situated along 
the lower surface curl up near the trailing edge. A comparison of the streamlines 
and the equi-vorticity lines near the trailing edge indicates a wavy pattern (or 
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FIGURE 3. Streamlines and equi-vorticity lines. (a )  t = 0.001. ( b )  t = 0.016. 
( c )  t = 0.148. 



Laminar unsteady $ow around a n  airfoil 237 

k 1 °  

0 . O 7 r . / . q w  

0,0145 
0.98 

0 0.02 0.04 0.06 0.08 
0.023 

u 

6 & 0.019 
i; 

0.9990 
0 1.0 2.0 3.0 4.0 

0,024 ml'O 0.999 

0,998 0.022 

4.0 6.0 8.0 10.0 12.0 

O.O'"t <;m4 y60'9987 
0.014 0.9982 

0.014 I I * I .o 
12 

1% 

0.010 0.998 
20 22 24 26 28 

Distance, 2, Distance, 2, 

FIGURE 4. Locations 2, of front (circles) and rear (squares) stagnation points. 
Open symbols, lower surface ; solid symbols, upper surface. 

valleys) along streamlines which corresponds to the concentric equi-vorticity 
lines of the starting vortex. There is a remarkable qualitative similarity between 
these instantaneous streamlines and the photographs of Prandtl & Tietjens 
(1934, pp. 296-299). The equi-vorticity plots in figure 3 clearly show that dif- 
fusion dominates following the impulsive start. As time increases, the effect of 
convection is first felt downstream of the trailing and the leading edges along the 
upper surface. 

The asymmetry of the flow field a t  t = O+ gives rise to a similar skew surface 
vorticity, shown for t = 0.003 in figure G(a). At small times, the pressure coeffi- 
cient C, is large and it decreases with time as shown in figure 7. Since the normal 
vorticity gradients a t  the surface are proportional t o  the tangential pressure 
gradients, they follow the same trend. An adverse pressure gradient near the lead- 
ing edge (on the upper surface) a t  t = 0.02 indicates the presence of vorticity 
sources due to convection of vorticity from upstream. This results in a local 
vorticity minimum. The value of C, a t  the front stagnation point decreases 
with time (figure 8a)  and the region over which there is an adverse pressure 
gradient extends in length along the upper surface. 

The vorticity profile and the flow directions normal to the surface a t  the lead- 
ing edge are shown in figure 9. The normal distance D, is measured in the z plane 
(figure 2) from the surface in the direction that corresponds to a line of constant 
8 in the transformed plane. The velocity increases rapidly to a large value within 
a short normal distance where vorticity is still large (figure 10) and then it 
decreases. Note that the first-order boundary-layer and potential flow theory 
does not give maximum velocity within the boundary layer. As time advances, 
this maximum value falls because the fluid is retarded (or the apparent thick- 
ness of the airfoil is increased). The angle p, which shows the direction of flow 



FIGUELE 5. Streamlines and equi-vorticity lines. ( a )  t == 0.596. 
(b )  t = 2.388. (c) t = 7-252. 
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Distance, x, Distance, zc 

FIGURE 6. Surface vorticity distributions. t = 0.003-6.228. 

0 0.2 0.4 0.6 0.8 

Distance, 5, 

FIGURE 7. Surface pressure coefficients. ---, t = 0.008; -.-, t = 0.020. 
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FIGURE 8. Surface pressure coefficients. t = 0.068-13.652. 

measured from the positive-x axis in the counterclockwise direction, also increases 
(figure 9b)  as the main flow is displaced outwards. The magnitude of the poten- 
tial flow velocity a t  t = Of is 2-2655 a t  the leading edge, whereas its value with 
circulation (that makes the velocity zero at  the trailing edge) is 4.53126. (The 
Kutta-doukowski condition is not applicable since the airfoil does not have a 
sharp trailing edge.) When t = 0.002, the magnitude of the maximum velocity 
is 1.8283 at  D ,  = 0.007881. At the trailing edge, initially, the vorticity and the 
velocities are higher than a t  the leading edge because of the larger curvature. 

Taneda (1972) investigated experimentally the development of lift for an 
impulsively started elliptical cylinder at  incidence. He reports that a t  the be- 
ginning of the motion a marked peak in the lift occurs. This peak nearly vanishes 
within a short time, then the lift increases again. This agrees with figures 11 (a) 
and (b), which show that there is a high value of C, right after the impulsive start 
which diminishes up to  t = 0.596 and then again increases. The equi-vorticity 
lines (figures 3 and 5a) show more positive vorticity than negative downstream 
of the trailing edge. The net vorticity (positive) is enhanced and moves down- 
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FIGURE 9. Velocity and flow-direction profiles at 2, = 0. 
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FIGURE 10. Vorticity profiles at s, = 0. Symbols as in figure 9. 
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FIGURE 11. Time histories of loads. 

0 
a 0 0 - 

stream as time increases. This brings about a change in the velocity field in the 
sense that a circulating motion is superimposed on the translatory motion of the 
fluid. The major contribution of the starting vortex in terms of circulation and 
lift is felt after the front stagnation point starts moving down the airfoil. The 
augmentation of the circulation is also suggested by the downward motion of the 
dividing streamline both upstream and downstream of the airfoil. Hence the 
classical relationship between lift and circulation does not hold a t  small t. 
The initial high values of the lift are a direct consequence of the impulsive start, 
whose influence a t  the beginning decays a t  an extremely rapid rate next to the 
surface. 
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FIGURE 12. Locations of vanishing vorticity on the upper surface of the airfoil. 

6. Growth of separation bubble and lift coefficient 
In this section, the onset of separation and the growth of the separation bubble 

are explained. The increase in the lift coefficient after separation is related to 
the growth of this bubble in terms of its size and strength. Before discussing these 
results, a few comments regarding separation bubbles, vortices and separation 
points are necessary. 

A bubble is said to be open (or burst) if it is not completely enclosed by a zero 
streamline and there is a closed streamline loop within this region. A vortex 
is defined by closed equi-vorticity lines. Bubbles and vortices are separate 
entities that may have some region in common. The attached bubble is bounded 
by a streamline with a stream function value of zero. This is brought about a t  any 
instant by a bifurcation of the surface streamline and the recombination of the 
branches. For a ruptured bubble, there is a completely ' separated' instantaneous 
streamline. The bifurcation point is called here the separation point and the 
unification point is named the reattachment point of the bubble. 

Sears & Telionis (1971) proposed a criterion for unsteady separation based on 
the appearance of a Goldstein (1948) singularity, which is a peculiarity of the 
boundary-layer equation. Our definition of a separation point, as a location a t  
which the instantaneous streamline bifurcates and downstream of which there is 
reverse flow, is based on the physical behaviour of the flow. Brown & Stewartson 
(1969), after repeated careful experiments and observations, report that in two- 
dimensional (steady) flow the main stream breaks away at  or very near the point 

16-2 
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FIGURE 13. Streamlines and equi-vorticity lines. (a )  t = 8.276. 
(6) t = 11.860. (c) t = 13.780. 
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where tho skin friction on a stationary body vanishes. In  the present study, the 
streamline bifurcation point is very near (or a t )  the location where the vorticity 
(or skin friction) is zero. 

When a circular cylinder is started impulsively from rest, the flow separates 
first a t  the rear stagnation point. In  the present study, a point of vanishing shear 
first appears near the leading edge (at xcu = 0.205, figure 12n),  instead of a t  the 
trailing edge. This point is a coalescence of a separation point and a reattachment 
point. The strength of separation bubble A increases with time, as indicated for 
example by the presence of the Y = -0.04 streamline (inside the bubble) in 
figure 5 (c). The width of the bubble also extends with time, and the streamlines 
widen over the rear of the bubble. Figure 13 ( a )  shows an open bubble a t  the down- 
stream end. Bubble A bursts just off the surface. Consequently, there is a small 
bubble between the reattachment point and the rear stagnation point (note the 
black dot a t  the trailing edge in figure 13a). The stagnation point becomes the 
separation point of the new bubble and the reattachment point of bubble A 
becomes the reattachment point of this bubble. The size of the bubble decreases 
and the separation and reattachment point combine to dissolve it. 

The downstream motion of the starting vortex and the diffusion of its vorticity 
are shown in figures 5 ( a )  and (b ) .  The structure of this vortex is not preserved 
as time advances. The convective effect near the leading edge a t  t = 0.596 
(figure 5a)  is shown by the presence of two w = - 9.0 lines. This effect is even 
more pronounced in figure 5 ( b ) ,  where equi-vorticity lines for w = - 5 ,  - 7.0 
and - 9.0 have turned around towards the leading edge. Both positive and nega- 
tive equi-vorticity lines exist along the upper surface when there is a separation 
bubble (figure 13a). Consequently, the zero-vorticity line passes through this 
bubble, which is unlike either a starting vortex or a solid-body rotation. 

Stuart (197 I ) ,  while discussing the flow field around a circular cylinder started 
impulsively from rest, states that after a short time a separation bubble is pro- 
duced a t  the rear of the cylinder “but still within the boundary layer”. He hesi- 
tates to label this phenomenon as separation since it does not involve a large- 
scale breakaway of fluid. Sears & Telionis (1971) maintain that the definition of 
unsteady separation must be based on physical phenomena such as the shedding 
of vorticity into the flow, but not flow reversal in general. They further state 
that when the vorticity of the boundary layer, or at least its outer part, is carried 
out into the flow (shedding of vorticity), the flow ceases to be of boundary-layer 
character. Finally, Wang (1971) holds the view that the definition of unsteady 
separation from physical phenomena, such as the shedding of vorticity and actual 
flow reversal (on a fixed body), cannot be formulated by any of the existing 
theories. He concludes that only a Lagrangian description of pathlines can charac- 
terize such unsteady phenomena. 

In  the light of these comments, it is constructive to compare the equi-vorticity 
lines. Below the airfoil, from the front stagnation point to the trailing edge there 
is a boundary-layer-type flow a t  all times. Similarly, along the upper surface, 
there are smooth equi-vorticity lines spanning the length of the airfoil a t  small 
times (figures 3 and 5a) .  While bubble A is growing, vorticity is being convected 
laterally away from the surface (figures 5 b and 13a). Immediately after bubble A 
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FIGCRE 14. Velocity and flow-direction profiles at z,, = 0.1353. 
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FIGURE 15. Velocity and flow-direction profiles at x,, = 0.8406. 

bursts, the basic pattern of the equi-vorticity lines does not change. Hence a 
distinction between a local separation bubble as part of a boundary layer and 
a large-scale breakaway of fluid is not available from these figures. 

The surface vorticity and the pressure distributions are given, respectively, 
in figures 6 (b) and 8 ( b )  and ( c ) .  AG all times, there are sharp variations in vorticity 
near the trailing edge as shown, for example, for t = 1.620. The variation in 
vorticity suggests that separation occurs downstream of the location at which 
the magnitude of the vorticity is minimum (or where the gradient of vorticity 
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along the surface is zero). Until bubble A bursts, the lower surface is under 
the influence of the impulsive start. The bump near x,, = 0.2 in the pressure 
distribution a t  t = 1.620 (figure 8 b )  reveals the presence of the separation bubble. 
The growth and downstream movement of this bubble are accompanied by a 
small drop in the suction peak (relative to C, a t  the front stagnation point), 
and a practically uniform pressure develops along the first half of the bubble 
figure 8c, t = 10.836). 

Bubble A alters the pressure distribution on the surface and thereby lowers 
the leading-edge suction peak. Downstream of the maximum bubble height, 
there is a region of pressure recovery. While the bubble is extending over the air- 
foil, the pressure a t  the point of reattachment is greater than a t  separation, 
although not so great as that for the hypothetical flow in its absence. (Hence 
the bubble could be regarded as a ‘device’ adopted by the fluid to diminish the 
positive pressure gradients on the surface.) When it extends into the wake, the 
pressure a t  the trailing edge is reduced. Across the bubble, the normal distance 
from the surface a t  which the vorticity becomes zero is shorter than the distance 
a t  which the velocity becomes minimum. This minimum velocity is different 
from zero and is associated with a drastic change in the direction of the flow 
(e.g. see figure 14 for x, = 0.1353). The magnitude of the reverse flow (during 
the time interval t = 1-450-10.836) is less than 0.1 a t  x,., = 0-1353 and a t  
x,, = 04760 it is less than 0.26. However, a t  xcu = 0-8406 when t = 10.836, 
it is as large as 0.697 and is increasing (figure 15). 

The loads acting on the airfoil between t = 0.596 and 10.836 are shown in figures 
11 ( b )  and ( G ) .  The value of C, increases during this time interval; maximum lift 
is attained when the bubble extends beyond the trailing edge while C,, con- 
tinues to diminish up to  t = 9.812. This drop is explained by the facts that, along 
the surface in contact with the separation bubble, the friction force does not 
act as drag and, on the lower surface, the vorticity continues to decrease until 
after the rear stagnation point moves into the flow field. C,, drops from its 
high initial values until incipient separation and then it rises since the effective 
thickness (as judged by the shape of the outer instantaneous streamline) of the 
airfoil is increased by the bubble. The net result of the friction and pressure drag 
is to reduce the total drag up to t = 4.180 and then to raise it. The value of C, is 
approximately three to four times C,. The value of increases up to t = 4.180 
and then decreases. The inviscid CL for the present investigation, which includes 
(Thwaites 1960, p. 194) the influence of the thickness of the airfoil, is 1.775. 
(It is the circulation around the airfoil that makes the trailing edge a stagnation 
point.) However, for the NACA 0009 airfoil a t  the same angle of attack and with 
R = 6 x lo6, experiments indicate that C, = 1.25, C, = 0.0127 and CAI = - 0.15 
(Abbott & Von Doenhoff 1959, pp. 454-455). In  the present study, the value of 
CD is an order of magnitude larger than the above value; C, = 1-88 when 

During the time interval under consideration, C, increases as the size and 
strength of bubble A increase because (i) the effective thickness of the airfoil 
becomes larger, (ii) the bubble is able to  sustain lower surface pressures, (iii) the 
net negative vorticity, which induces clockwise circulation, rises above the upper 

t = 10.324. 
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surface (compare the location of the w = - 1.0 vorticity line in figures 5a and 
I ~ u ) ,  (iv) the front stagnation point moves down the lower surface up to 
t = 8.788 (figures 4b and c),  and (v) the dividing streamline ('I? = 0) moves 
downwards both upstream and downstream of the airfoil. 

7. Anatomy of the flow around a stalled airfoil 
Two new counterclockwise bubbles develop on the  surface and, consequently, 

the lift decreases. When these bubbles are cast off, C, increases and, eventually, 
one clockwise bubble remains. This sequence, which began when bubble A burst, 
is discussed below. Finally, a comparison with other studies is made. 

A new bubble appears in figure 13 (b ) ,  near x, = 0-55. (This bubble is labelled 
B.) The direction of flow in this bubble is counterclockwise, opposite to that in 
bubble A .  Bubble B develops because of the adverse pressure gradient for the 
upstream flow next to the surface in bubble A .  The strength of bubble A grows 
with time and bubble B expands (figures 13b and c). Also, the centre of bubbleA 
moves downstream. A new counterclockwise bubble (C) appears a t  t = 12.372 
near the trailing edge. Bubble B primarily grows along the downstream direction 
whereas bubble C mainly extends up the chord. They coalesce (figure 12b) and 
increase in size and strength, while preserving two separate centres (figure 16a);  
later, both bubbles B and C regain their separate identities. At t = 17.236 
(figure 16b),themaximumdistancein theydirectionbetweenw = 1.0and - 1-Ois 
nearly twice the projected length of the airfoil. The movement of the front stagna- 
tion point up the airfoil (figures 4c-e) indicates that the circulation around the 
airfoil diminishes. The overall trend of the dividing streamline is to shift upwards. 

The downstream motion of the centre of ruptured bubble A causes stall, 
precipitating a sequence of events: (i) negative pressure gradients upstream of 
the location of maximum bubble height develop on the surface; (ii) the forma- 
tion of counterclockwise bubble B decreases the positive pressure gradients 
created by bubble A near the trailing edge; (iii) negative pressure gradients 
(figure Sd) near the trailing edge, with the flow moving upstream, form the 
counterclockwise bubble C, which augments these negative pressure gradients; 
(iv) the bubbles coalesce and (v) separate again. Overlaying this sequence on 
the time history of the loads (figure l l c ) ,  we observe that (a) the growth of CL 
diminishes when event (i) begins; (b)  C, falls just before bubble B is formed; 
(c) events (iii) and (iv)lower C, further; (d )  the rate of decrease in CL is less 
when event (v) starts. C, behaves in the same manner. However, the moment 
coefficient is out of phase: it peaks before both C, and C,. 

Bubble B splits bubble A and opens to the outside flow as observed in figure 
16 (c). (The bubble near the leading edge is labelled D and the second part of the 
original bubble A is called A'.) Bubbles D and A', as shown here or in figure 17 (a) ,  
compare remarkably well with those photographed by Prsndt,l (1952, figure 
3.83, p. 200) over a stalled airfoil (see also Batchelor 1967, figure 5.11 .1(b) ,  
plate 7) .  The strength of bubble C intensifies, it moves downstream and it lifts 
off the airfoil. The reattachment point of bubble D and the separation point of 
bubble A' move down the airfoil (figure 12b).  Later, bubble A' also disengages 
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FIGURE 16. Streamlines and equi-vorticity lines. (a )  t = 16.212. 
( 6 )  t = 17.236. (c) t = 18.132. 
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from the surface. Near the trailing edge, the movement of the separation point 
of bubble A' is helped by a small bubble observed a t  t = 22.612. (The reattach- 
ment and separation points are shown, respectively, in figures 12b and 4f.) 
The separation point of bubble A' and the reattachment point of this new bubble 
travel towards each other and merge (shown by the dashed line in figure l 2 b ) .  
Instantaneously, the separation point of bubble A' proceeds along the zero 
streamline (in the flow field) of this bubble to ibs separation point and makes it 
a part of bubble B.  This phenomenon is similar to the one observed just after the 
impulsive start when the motion of the rear stagnation point towards the trailing 
edge is helped by a bubble. As the counterclockwise bubble C (which caused a 
loss in C,) moves off the airfoil, the positive vorticity associated with it moves 
downstream and C, increases (figure 1 I c). Hence, a second vortex is being shed 
near the trailing edge. After bubble A' bursts, the rate of increase of C, with time 
falls and the further downstream motion of this bubble causes CL to diminish. 
I n  other words, the gain in positive vorticity in the wake (downstream of the 
trailing edge) boosts CL and the rise in negative vorticity lowers it. This is verified 
by a comparison of the equi-vorticity plots in figures 16 (c) and 17 (a) and ( b )  
with figure l l (c ) .  Note that the process of bubble C moving off the surface does 
not result in the absence of the rear stagnation point! as for bubble A (8  6); thus, its 
leaving the surface is not categorized as bursting. 

The trailing-edge pressure coefficient becomes less, relative to that a t  the front 
stagnation point, until bubble A' opens downstream. As for bubble A ,  it then rises. 
The bumps in the C, distribution along the upper surface between t = 18.772 and 
20.820 (figure 18a) correspond to bubble A'. The suction peak is low until after 
bubble C starts to leave the surface. The downstream motion of this bubble and 
its eventual lift-off from the surface intensify the suction peak. The clockwise 
bubble A' causes a decrease in pressure along the upper surface near the trailing 
edge and it counteracts the tendency of the counterclockwise bubble C t o  raise 
the pressure. I ts  influence is seen a t  t = 20.820 (figure 18a). 

The front stagnation point moves up the airfoil during t = 17.492-19.156 and 
then it moves down the surface, suggesting that circulation first decreases. This is 
substantiated by the variation of CL in figure 11 (c) and the motion of the dividing 
streamline. In  addition, the development of counterclockwise bubbles B and C 
and the diminishing size and strength of bubble A' are suggested as the causes of 
the fall in C, and C,. Obviously then, the lift-off of bubble C must increase these 
loads; and after bubble A' ruptures, they diminish since it disengages itself from 
the surface. Just before bubble A' bursts, three bubbles are in contact with the 
surface, two clockwise bubbles and one counterclockwise bubble. Hence, C, 
does not reach the previous high value ( 3  6) when only one clockwise bubble is in 
contact with the surface. 

The evolution of the flow field between t = 23.380 and 28.756 is shown by the 
instantaneous streamlines and equi-vorticity lines in figures 17 (c) and 19. The 
strength of bubble B increases and subsequently the bubble disengages from 
the surface, producing a small bubble near the trailing edge; the separation point 
(or rear stagnation point) of the bubble remains near the trailing edge. I n  figure 
17(c), the point where the streamline Y = 0.04 crosses is a stagnation point. 
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FIGURE 17. Streamlines and cqui-vorticity lines. ( a )  t = 19.284. 
( 6 )  t = 21.844. (c) t = 23.892. 
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FIGURE 18. Surface pressure coefficients. t = 16.468-28.756. 

In  an irrotational solenoidal flow such a crossing is at  right angles (Batchelor 
1967, pp. 105-106). In the presence of bubble B, the reattachment of bubble D,  
unlike that of bubble A ,  is normal to the surface and its centre is near the down- 
stream end. In figure 19(b), a new bubble ( E )  is observed near the midsection of 
the airfoil. (Recall the formation of bubble B.) Furthermore, the reattachment 
of bubble D fails to occur. Unlike the bursting of bubble A and the subsequent 
development of bubble B, bubble E forms before bubble D ruptures. The sepa- 
rated streamline (bubble D) passes the trailing-edge region with the help of a very 
small bubble observed at t = 27.220 only. This phenomenon is the same as that 
reported when bubble A burst (8 6).  Bubble D is weaker than the original bubble 
A ;  consequently, C, is not as high as it is in the presence of bubble A (figure 11 c). 
Figure 19(c) shows a new bubble (3') near the trailing edge (recall the formation 
of bubble C) and bubble E has moved downstrea,m. A neck is produced down- 
stream of the trailing edge in the w = 1.0 loop in figure 17 ( c ) ;  figure I9 (a)  shows 
that part of this loop is separated (cast off). As time advances, the region (down- 
stream of the trailing edge) occupied by the positive vorticity extends and the 
negative vorticity is found in a smaller area. A vortex similar to the starting 
vortex is observed in figures 17 ( c )  and 19 (a )  and (b) .  As this vortex grows, the 
lift rises (figure I1 c). (The developments are similar to those relating to the shed- 
ding of bubble C.) 

The surface C, distributions are exhibited in figure 18 (b).  As indicated pre- 
viously, when bubble A' bursts, its downstream displacement reduces the value 
of C, a t  the trailing edge relative to its value at  the front stagnation point. 
While bubble B is shed and bubble D extends, the above trend is reversed 
until bubble D bursts. The suction peak a t  t = 27.220 is less than that observed 
for bubble A under similar circumstances. The C, distribution along the upper 
surface in contact with bubble D when t = 25.940 and 27.220 suggests the follow- 
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FIGURE 19. Streamlines and equi-vorticity lines. (a) t = 25.684. 
( b )  t = 27.732. (c) t = 28.756. 
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ing (as for bubble A ) .  There are four distinct regions: (a )  a region of positive 
pressure gradient just after the separation point, ( b )  a region of practically con- 
stant C,, ( c )  a region of adverse pressure gradient that develops bubble E ,  and 
( d )  a region of positive pressure gradient brought about by the tendency of bubble 
D to diminish the pressure. The bump in the C, distribution corresponds to bubble 
D. Finally, when bubble D ruptures, a negative pressure gradient develops near 
the trailing edge and, subsequently, bubble F is formed. 

The Strouhal number, defined as the ratio fd/U(where f is the shedding fre- 
quency and d a characteristic length scale), is 0.2162 with the chord as the charac- 
teristic length and 0-0589 on the basis of the projected height of the airfoil 
on the y axis. However, if d is taken as the width of the wake just downstream 
of the trailing edge defined by the maximum vertical distance between w = 1-0 
and - 1.0 a t  t = 20.820, then the Strouhal number is 0.1201. Obviously, these 
numbers will be different when the shedding frequency is established. It should 
be mentioned here that the factors governing the shedding frequency for bluff 
bodies are not completely understood. Several length parameters have been pro- 
posed for calculating the Strouhal number. Dikshit (1970) conducted experiments 
with a family of elliptical cylinders. He was unable to correlate results for very 
slender ellipses (e = 0.92 and 0.98) a t  small angles of attack (a  < 20'). 

Honji (1972) studied the nearly impulsive starting flow past a flat plate a t  
CL = 45' and R = 200. Experiments were conducted in water with aluminium 
dust for flow visualization until shortly after bubbles B and C were formed. The 
flow development observed by Honji is similar to that reported in the numerical 
study by Lugt & Haussling (1972) for a 10% thick elliptical cylinder. There 
is a remarkable similarity between the streamline sequence Honji reported and 
that presented here even though a, R and the body shapes are different. 

8. Concluding remarks 
The unsteady flow around an airfoil has been solved through the use of finite- 

difference techniques. A versatile mathematical formulation is presented for 
investigating the flow past a flat plate, an elliptical cylinder or a Joukowski 
airfoil. Furthermore, any body that can be transformed into a circle (with no 
surface singularities) can be handled with only minor modifications. A new set of 
far boundary conditions is formulated. (Credit is due to Professor Morkovin for 
insisting on a proper set of conditions and for helping to formulate them.) 
The separation of the domain of calculation into rotational and irrotational 
parts allows a saving in computer costs. The development of a starting vortex 
and the production of circulation are explained. A distinction is made between a 
vortex and a bubble. The growth and intensification of separation bubbles and 
their role in influencing C, are accounted for. The generation of unsteady lift 
and unsteady vortical formations have been studied. The stalling characteristics 
of a 9 yo thick, symmetric airfoil at an angle of attack of 15" with R = 1000 are 
sequentially traced. Numerical irregularities, reported by Lugt & Haussling 
(1972) for R = 500, are absent in the present study. 

The main conclusions of this investigation are as follows. Immediately after 
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the impulsive start, both the front and rear stagnation points start moving. The 
rear stagnation point moves towards the trailing edge and the front stagnation 
point towards the leading edge. Within a very short time, the rear stagnation 
point arrives near the trailing edge with the help of a small bubble. The starting 
vortex has concentric equi-vorticity lines with a maximum in the centre. The 
value ofCL is large initially because of the impulsive start and it drops rapidly. The 
growth of circulation and change in its value are indicated by the movement of 
the front stagnation point and the dividing streamline upstream and downstream 
of the airfoil. The incipient separation (after the impulsive start) occurs down- 
stream of the location where the magnitude of the vorticity is minimum (or where 
the gradient of vorticity along the surface is zero). Generally a bump in the pres- 
sure distribution along the upper surface of a smooth airfoil suggests the presence 
of a bubble. The downstream extension of a clockwise bubble causes it to burst, 
and the instantaneous streamlines from below the airfoil become part of this 
bubble, whereas a counterclockwise bubble opens to  streamlines from above the 
airfoil as this bubble moves off the surface. The stalling characteristic of an airfoil 
is initiated when the clockwise bubble bursts. An increase in the strength of a 
clockwise (or a counterclockwise) bubble accompanies lower (or higher) pres- 
sures along the airfoil surface in contact with it. The lift increases when attached 
clockwise bubbles grow and when counterclockwise bubbles are swept away. It 
diminishes when counterclockwise bubbles grow and clockwise bubbles are shed. 
The rise or fall in the net positive vorticity in the wake increases or lowers the 
lift. Furthermore, the increase in net negative vorticity over the upper surface, 
with the vorticity in the wake practically the same, raises the lift. 

Evidence provided by Honji (1972) and Lugt & Haussling (1973) suggests 
that all laminar flows around a stalled airfoil with leading-edge separation have 
the same basic topological character. Therefore, the specific lessons learned in this 
study on the behaviour of the time-dependent flow structure and force evolution 
are valid in general. This study may also be used as a stepping stone for investi- 
gating trailing-edge and dynamic stall of an oscillating airfoil or a stationary 
airfoil in an oscillating mean flow. Furthermore, it is hoped that this study of 
leading-edge stall will help in understanding stall conditions encountered in 
practice: ( a )  the separation bubble over a jet-flapped airfoil that fails to remain 
bottled up a t  the trailing edge and ( b )  the long laminar separation bubble that 
fails to reattach when undergoing transition to  turbulence. These investigations 
require turbulence modelling and computers of the class of ILLIAC IV. 
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